If z = x² + y² , prove that:
[tex]{ \large{ \rm{ {x}^{2} \: {\frac{ {∂}^{2}z }{∂ {x}^{2} } + 2xy \frac{ {∂}^{2}z }{∂x∂y} } + {y}^{2} \frac{ {∂}^{2}z }{∂ {y}^{2} } = 2z}}}[/tex]
_____________
Don't Spam
Well explained answers needed

Respuesta :

Answer:

Given That:

[tex]{ \large\longrightarrow { \rm{z = {x}^{2} + {y}^{2} }}}[/tex]

Partial differentiating both sides with respect to x, we get:

[tex]{ \large\longrightarrow { \rm{ \frac{∂z}{∂x} = 2x}}}[/tex]

Partial differentiating again with respect to x, we get:

[tex]{ \large\longrightarrow {{ \rm{ \frac{ {∂}^{2}z }{∂ {x}^{2} } \: = 2 \: \: \: \: \quad -(i) }}}}[/tex]

Consider again:

[tex]{ \large\longrightarrow {{ \rm{ z = {x}^{2} + {y}^{2} }}}}[/tex]

Partial differentiating both sides with respect to y, we get:

[tex]{ \large\longrightarrow { { \rm{ \frac{∂z}{∂y} = 2y}}}}[/tex]

Now, partial differentiating both sides with respect to x, we get:

[tex]{ \large\longrightarrow{ \rm{ \frac{ {∂}^{2}z }{∂x \:∂y } = 0 \: \: \: \quad - (ii) }}}[/tex]

Consider again:

[tex]{ \large\longrightarrow { \rm{ \frac{∂z}{∂y} = 2y}}}[/tex]

Partial differentiating both sides with respect to y, we get:

[tex]{ \large\longrightarrow{ \rm{ \frac{ {∂}^{2}z }{∂ {y}^{2} } = 2 \: \: \: \: \: \quad - (iii) }}}[/tex]

Now, consider Left Hand Side, we get:

[tex]{ \large{ \rm{ \longrightarrow {x}^{2} \frac{ {∂}^{2}z }{∂ {x}^{2} } + 2xy \frac{ {∂}^{2} x}{∂x \:∂y } + {y}^{2} \frac{ {∂}^{2}z }{∂ {y}^{2} } }}}[/tex]

From Equation (i),(ii) and (iii), we can write:

[tex]\longrightarrow{ \large{ \rm{ {2x}^{2} + 0 + {2y}^{2} }}}[/tex]

[tex]\longrightarrow \: { \large{ \rm{2( {x}^{2} + {y}^{2} ) }}}[/tex]

[tex]\longrightarrow{ \large{ \rm{2z}}}[/tex]

Therefore,

[tex]{ \large{\longrightarrow \: { \rm{{x}^{2} \frac{ {∂}^{2} z}{∂ {x}^{2} } + 2xy \frac{ {∂}^{2}x }{∂x \:∂y } + {y}^{2} \frac{ {∂}^{2}z }{∂ {y}^{2} } = 2z }}}}[/tex]

Hence Proved!!

[tex] \: [/tex]

Learn More:-

[tex]\boxed{\begin{array}{c|c}\bf f(x)&\bf\dfrac{d}{dx}f(x)\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf0\\ \\ \sf sin(x)&\sf cos(x)\\ \\ \sf cos(x)&\sf-sin(x)\\ \\ \sf tan(x)&\sf{sec}^{2}(x)\\ \\ \sf cot(x)&\sf-{cosec}^{2}(x)\\ \\ \sf sec(x)&\sf sec(x)tan(x)\\ \\ \sf cosec(x)&\sf-cosec(x)cot(x)\\ \\ \sf\sqrt{x}&\sf\dfrac{1}{2\sqrt{x}}\\ \\ \sf log(x)&\sf\dfrac{1}{x}\\ \\ \sf{e}^{x}&\sf{e}^{x}\end{array}}[/tex]

Refer to the attachments for answer

Used Concept :-

  • [tex]{\boxed{\bf{\dfrac{d}{dx}(x^n)=nx^{n-1}}}}[/tex]
Ver imagen Аноним
Ver imagen Аноним