Answer:
[tex]y=\dfrac{2xz}{(z-x)}[/tex]
Step-by-step explanation:
Given:
[tex]\dfrac{1}{x}=\dfrac{2}{y}+\dfrac{1}{z}[/tex]
[tex]\implies \dfrac{2}{y}=\dfrac{1}{x}-\dfrac{1}{z}[/tex]
[tex]\implies \dfrac{2}{y}=\dfrac{z-x}{xz}[/tex]
[tex]\implies 2xz=y(z-x)[/tex]
[tex]\implies y=\dfrac{2xz}{(z-x)}[/tex]
When x = 5 and z = 10:
[tex]\implies y=\dfrac{2(5)(10)}{(10-5)}[/tex]
[tex]\implies y=\dfrac{100}{5}[/tex]
[tex]\implies y=20[/tex]