Given that ¹/x=²/y+¹/z. express y interms of x and z. if x=5 and z=10. find the value of y leaving your answer as a mixed fraction​

Respuesta :

Answer:

[tex]y=\dfrac{2xz}{(z-x)}[/tex]

Step-by-step explanation:

Given:

[tex]\dfrac{1}{x}=\dfrac{2}{y}+\dfrac{1}{z}[/tex]

[tex]\implies \dfrac{2}{y}=\dfrac{1}{x}-\dfrac{1}{z}[/tex]

[tex]\implies \dfrac{2}{y}=\dfrac{z-x}{xz}[/tex]

[tex]\implies 2xz=y(z-x)[/tex]

[tex]\implies y=\dfrac{2xz}{(z-x)}[/tex]

When x = 5 and z = 10:

[tex]\implies y=\dfrac{2(5)(10)}{(10-5)}[/tex]

[tex]\implies y=\dfrac{100}{5}[/tex]

[tex]\implies y=20[/tex]