Respuesta :

Answer:

[tex]\cot(\theta)=\sqrt{2}[/tex]

[tex]\implies \dfrac{1}{\tan(\theta)}=\sqrt{2}[/tex]

[tex]\implies \tan(\theta)=\dfrac{1}{\sqrt{2}}[/tex]

[tex]\implies \theta=35.26438968...\textdegree \pm180\textdegree n[/tex]

[tex]\implies \theta=215.26438968...\textdegree[/tex]

⇒ Opposite side to angle = 1,  Adjacent side to angle = √2

⇒ Hypotenuse = √(1² + √2²) = √3

[tex]\implies \cos(\theta)=\dfrac{A}{H}=-\dfrac{\sqrt{2}}{\sqrt{3}}=-\dfrac{\sqrt{6}}{3}[/tex]

[tex]\implies \sin(\theta)=\dfrac{O}{H}=-\dfrac{1}{\sqrt{3} }=-\dfrac{\sqrt{3}}{3 }[/tex]

[tex]\implies \tan(\theta)=\dfrac{O}{A}=\dfrac{1}{\sqrt{2}} = \dfrac{\sqrt{2}}{2}[/tex]