Respuesta :

Answer:

20

Step-by-step explanation:

Let's start by rewriting the second equation in terms of "x":

[tex]x+y=5[/tex]

Subtract y from both sides:

[tex]x=5-y[/tex]

Now, substitute "5-y" for "x" in the first equation:

[tex](5-y)^2-y^2=100[/tex]

Note that:

[tex](a-b)^2=a^2-2ab+b^2[/tex]

[tex]25-10y+y^2-y^2=100[/tex]

Cancel out like terms:

[tex]25-10y=100[/tex]

Subtract 25 from both sides:

[tex]-10y=75[/tex]

Divide both sides by -10

[tex]y=\frac{75}{-10}=\frac{15}{-2}=-\frac{15}{2}[/tex]

Now, substitute this value back into either of the equations to solve for x.

[tex]x+y=5\\x-\frac{15}{2}=5\\[/tex]

Add 15/2 to both sides:

[tex]x=5+\frac{15}{2}\\x=\frac{10}{2}+\frac{15}{2}\\x=\frac{25}{2}[/tex]

Now, find the difference:

[tex]x-y=\frac{25}{2}-(-\frac{15}{2})=\frac{25}{2}+\frac{15}{2}=\frac{40}{2}=20[/tex]