Answer :
Explanation :
Since the wall with all its bricks makes up the space occupied by it, we need to find the volume of the wall, which is nothing but a cuboid.
Here,
[tex]{\qquad \dashrightarrow{ \sf{Length=10 \: m=1000 \: cm}}}[/tex]
[tex]\qquad \dashrightarrow{ \sf{Thickness=24 \: cm}}[/tex]
[tex]\qquad \dashrightarrow{ \sf{Height=4 m=400 \: cm}}[/tex]
Therefore,
[tex]{\qquad \dashrightarrow{ \bf{Volume \: of \: the \: wall = length \times breadth \times height}}}[/tex]
[tex]{\qquad \dashrightarrow{ \sf{Volume \: of \: the \: wall = 1000 \times 24 \times 400 \: {cm}^{3} }}}[/tex]
Now, each brick is a cuboid with Length = 24 cm, Breadth = 12 cm and height = 8 cm.
So,
[tex]{\qquad \dashrightarrow{ \bf{Volume \: of \: each \: brick = length \times breadth \times height}}}[/tex]
[tex]{\qquad \dashrightarrow{ \sf{Volume \: of \: each \: brick = 24 \times 12 \times 8 \: {cm}^{3} }}}[/tex]
So,
[tex]{\qquad \dashrightarrow{ \bf{Volume \: of \: bricks \: required = \dfrac{volume \: of \: the \: wall}{volume \: of \: each \: brick} }}}[/tex]
[tex]{\qquad \dashrightarrow{ \sf{Volume \: of \: bricks \: required = \dfrac{1000 \times 24 \times 400}{24 \times 13 \times 8} }}}[/tex]
[tex]{\qquad \dashrightarrow{ \sf{Volume \: of \: bricks \: required = \bf \: 4166.6} }}[/tex]
Therefore,