Respuesta :

Answer:

[tex]\hookrightarrow \sf x^6+24x^5+240x^4+1280x^3+3840x^2+6144x+4096[/tex]

solving steps:

[tex]\rightarrow \sf (x + 4)^6[/tex]

[tex]\bold{rewrite \ the \ following}[/tex]

[tex]\rightarrow \sf (x + 4)^2 (x + 4)^2 (x + 4)^2[/tex]

[tex]\bold {formula \ used : \sf (x+a)^2 = (x^2 + 2xa + a^2)}[/tex]

[tex]\rightarrow \sf (x^2 + 8x+16) (x^2 + 8x+16) (x^2 + 8x+16)[/tex]

[tex]\bold{simplify \ by \ removing \ parenthesis}[/tex]

[tex]\rightarrow \sf (x^4 +8x^3 + 16x^2 + 8x^3 +64x^2 + 128x+16x^2+128x+256 ) (x^2 + 8x+16)[/tex]

[tex]\bold{basic \ addition \ of \ integers }[/tex]

[tex]\rightarrow \sf (x^4+16x^3+96x^2+256x+256) (x^2 + 8x+16)[/tex]

[tex]\bold{remove \ parenthesis}[/tex]

[tex]\rightarrow \sf (x^6 + 16x^5 + 96x^4 + 256x^3 + 256x^2 + 8x^6 + 128x^4 + 768x^3 + 2048x^2 + 2048 + 16x^4 + 256x^3 + 1536x^2 + 4096x + 4096)[/tex]

[tex]\bold {final \ answer:}[/tex]

[tex]\rightarrow \sf x^6+24x^5+240x^4+1280x^3+3840x^2+6144x+4096[/tex]