Respuesta :

Answer:

gradient = 1

Step-by-step explanation:

calculate the gradient using the slope formula

m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]

with (x₁, y₁ ) = (0, - 2) and (x₂, y₂ ) = (2, 0) ← 2 points on the line

m = [tex]\frac{0-(-2)}{2-0}[/tex] = [tex]\frac{0+2}{2}[/tex] = [tex]\frac{2}{2}[/tex] = 1

[tex]\underline{\underline{\large\bf{Solution:-}}}\\[/tex]

[tex]\longrightarrow[/tex]By observing the graph of the line , we can observes that it intersects x- axis at 2 and y -axis at -2 i.e., it passes through (2,0) and (0,-2) respectively.

[tex]\textsf{The gradient of a line passing through two}[/tex][tex]\sf{given \: points \:(x_1,y_1) \:and \:(x_2,y_2) \: is \:given \: by - }[/tex]

[tex]\green{ \underline { \boxed{ \sf{ Gradient =\frac{y_2-y_1}{x_2-x_1}}}}}[/tex]

Here,

  • [tex]\sf{x_1= 2}[/tex]
  • [tex]\sf{y_1=0}[/tex]
  • [tex]\sf{x_2=0}[/tex]
  • [tex]\sf{y_2= -2}[/tex]

Putting Values:-

[tex]\begin{gathered}\\\implies\quad \bf Gradient =\frac{-2-0}{0-2} \\\end{gathered} [/tex]

[tex]\begin{gathered}\\\implies\quad \bf \frac{\cancel{-2}}{\cancel{-2}} \\\end{gathered} [/tex]

[tex]\begin{gathered}\\\implies\quad \bf 1 \\\end{gathered} [/tex]

>>The gradient of the graph shown is 1