Respuesta :

Answer:

x = 2√58

Step-by-step explanation:

Pythagoras' Theorem:  a² + b² = c²

(where a and b are the legs and c is the hypotenuse of a right triangle)

Find the height of the triangle by using the base and hypotenuse of the smaller interior triangle and Pythagoras' Theorem:

   a² + b² = c²

⇒ a² + 6² = (6√2)²

⇒ a² = (6√2)² - 6²

⇒ a² = 36

⇒ a = 6

Now we have the base and height of the larger interior triangle, we can calculate x:

    a² + b² = c²

⇒ 6² + 14² = x²

⇒ x² = 232

⇒ x = √232

⇒ x = 2√58

[tex]\\ \rm\Rrightarrow \dfrac{6\sqrt{2}}{6}=\dfrac{x}{14}[/tex]

[tex]\\ \rm\Rrightarrow 6x=84\sqrt{2}[/tex]

[tex]\\ \rm\Rrightarrow x=14\sqrt{2}[/tex]

  • Done