Respuesta :

Answer:

[tex]6[/tex]

Step-by-step explanation:

[tex]1296^{0.17}[/tex]

[tex]1296^{0.17}=3.38176\dots[/tex]

[tex]=3.38176\dots[/tex]

[tex]1296^{0.08}[/tex]

[tex]1296^{0.08}=1.77422\dots[/tex]

[tex]=1.77422\dots[/tex]

[tex]\mathrm{Multiply\:the\:numbers:}\:3.38176\cdot \:1.77422=5.99998\dots[/tex]

[tex]=5.99998\dots[/tex]

[tex]=5.99998[/tex]≈[tex]6[/tex]

Answer:

D

Step-by-step explanation:

using the rules of exponents

[tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex]

[tex]a^{\frac{m}{n} }[/tex] = [tex]\sqrt[n]{a^{m} }[/tex]

[tex](1296)^{0.17}[/tex] × [tex](1296)^{0.08}[/tex]

= [tex]1296^{(0.17+0.08)}[/tex]

= [tex]1296^{0.25}[/tex] = [tex]1296^{\frac{1}{4} }[/tex] , then

[tex]\sqrt[4]{1296}[/tex]

= [tex]\sqrt[4]{6^{4} }[/tex]

= 6