Respuesta :

Answer: [tex]{\boxed{h(x+4)=\frac{9+3x}{8+x}}}[/tex]

Concept:

In a function f(x), it represents a function in terms of x or for x. Therefore, to find the values in the function, substitute values within the parenthesis to solve.

Solve:

Given information

[tex]h(x)=\frac{-3+3x}{4+x}[/tex]

Need to find

[tex]h(x+4)[/tex]

Substitute (x + 4) to the position of x

[tex]h(x+4)=\frac{-3+3(x+4)}{4+(x+4)}[/tex]

Distributive property on the numerator

[tex]h(x+4)=\frac{-3+3x+12}{4+(x+4)}[/tex]

Combine like terms

[tex]h(x+4)=\frac{-3+12+3x}{4+4+x}[/tex]

[tex]\boxed{h(x+4)=\frac{9+3x}{8+x}}[/tex]

Hope this helps!! :)

Please let me know if you have any questions