Respuesta :

Space

Answer:

[tex]\displaystyle f'(x) = -12x^2 + 4x[/tex]

General Formulas and Concepts:

Algebra I

Terms/Coefficients

  • Expanding/Factoring

Calculus

Limits

  • Limit Rule [Variable Direct Substitution]:                                                 [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Differentiation

  • Derivatives
  • Derivative Notation

The definition of a derivative is the slope of the tangent line:                       [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle f(x) = -4x^3 + 2x^2[/tex]

Step 2: Differentiate

  1. [Function] Substitute in x:                                                                         [tex]\displaystyle f(x + h) = -4(x + h)^3 + 2(x + h)^2[/tex]
  2. Substitute in functions [Definition of a Derivative]:                                 [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{-4(x + h)^3 + 2(x + h)^2 - \big( -4x^3 + 2x^2 \big)}{h}[/tex]
  3. Simplify:                                                                                                     [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{-12hx^2 - 12h^2x + 4hx - 4h^3 + 2h^2}{h}[/tex]
  4. Factor:                                                                                                           [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{h \big( -12x^2 - 12hx + 4x - 4h^2 + 2h \big)}{h}[/tex]
  5. Simplify:                                                                                                        [tex]\displaystyle f'(x) = \lim_{h \to 0} -12x^2 - 12hx + 4x - 4h^2 + 2h[/tex]
  6. Evaluate limit [Limit Rule - Variable Direct Substitution]:                       [tex]\displaystyle f'(x) = -12x^2 - 12(0)x + 4x - 4(0)^2 + 2(0)[/tex]
  7. Simplify:                                                                                                     [tex]\displaystyle f'(x) = -12x^2 + 4x[/tex]

∴ the derivative of the given function will be equal to -12x² + 4x.

---

Learn more about derivatives: https://brainly.com/question/25804880

Learn more about calculus: https://brainly.com/question/23558817

---

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation