The given magnitude of forces of F₁ = F₄, F₂ = F₃, F₁ = 2·F₂, give the
forces that exert zero net torque on the disk as the options;
(B) F₂
(D) F₄
How can the net torque on the disk be calculated?
The given parameters are;
F₁ = F₄
F₂ = F₃
F₁ = 2·F₂
Therefore;
F₄ = 2·F₂
In vector form, we have;
[tex]\vec{F_4} = \mathbf{\frac{\sqrt{3} }{2} \cdot F_4 \cdot \hat i - 0.5 \cdot F_4 \hat j}[/tex]
[tex]\vec{F_2} = \mathbf{ -F_2 \, \hat j}[/tex]
Clockwise moment due to F₄, M₁ = [tex]-0.5 \times F_4 \, \hat j \times \dfrac{R}{2}[/tex]
Therefore;
[tex]M_1 =- 0.5 \times 2 \times F_2 \, \hat j \times \dfrac{R}{2} = \mathbf{ -F_2 \, \hat j \times \dfrac{R}{2}}[/tex]
Counterclockwise moment due to F₂ = [tex]-F_2 \, \hat j \times \dfrac{R}{2}[/tex]
Given that the clockwise moment due to F₄ = The counterclockwise moment due to F₂, we have;
Two forces that combine to exert zero net torque on the disk are;
F₂, and F₄
Which are the options; (B) F₂, and (D) F₄
Learn more about the resolution of vectors here:
https://brainly.com/question/1858958