csc A - sin A =
A. (cos^2A) / (sinA)
B. (1 - sinA) / (sinA)
C. (1 - sinA) / (cosA)

Answer:
A) [tex]\frac{cos^2A}{sinA}[/tex]
Step-by-step explanation:
[tex]cscA-sinA\\\\\frac{1}{sinA}-sinA\\ \\\frac{1}{sinA}-\frac{sin^2A}{sinA}\\ \\ \frac{1-sin^2A}{sinA}\\ \\\frac{cos^2A}{sinA}[/tex]
Answer:
1st option
Step-by-step explanation:
Using the identities
csc x = [tex]\frac{1}{sinx}[/tex]
sin² x + cos²x = 1 ⇒ cos²x = 1 - sin²x
then
csc A - sinA
= [tex]\frac{1}{sinA}[/tex] - sinA
= [tex]\frac{1-sin^2A}{sinA}[/tex]
= [tex]\frac{cos^2A}{sinA}[/tex]