Respuesta :

Here , we are going to use the property of linear pair . So , this property states that on any line , the sum of all angles formed by drawing other lines on the initial line is 180° or π radians .

__________________________

Coming back to the question , we are provided that ;

  • [tex]{\sf \angle \: 1 = (x-18)^{\circ}}[/tex]

  • [tex]{\sf \angle \: 2 = {5x}^{\circ}}[/tex]

Now by property of linear pair , we have ;

[tex]{: \implies \quad \sf \angle \: 1 + \angle \: 2 = 180^{\circ}}[/tex]

Putting the values ;

[tex]{: \implies \quad \sf x - 18^{\circ} + 5x = 180^{\circ}}[/tex]

[tex]{: \implies \quad \sf 6x = 180^{\circ}+18^{\circ}}[/tex]

[tex]{: \implies \quad \sf 6x=198^{\circ}}[/tex]

[tex]{: \implies \quad \sf x = \dfrac{198^{\circ}}{6}}[/tex]

[tex]{: \implies \quad \sf x=33^{\circ}}[/tex]

Now , we can find measures of [tex]{\sf \angle \: 1}[/tex] & [tex]{\sf \angle \: 2}[/tex] , by putting the value of x

[tex]{: \implies \quad \sf \angle \: 1 = (x-18)^{\circ}}[/tex]

[tex]{: \implies \quad \sf \angle \: 1 = (33-18)^{\circ}}[/tex]

[tex]{\boxed{\bf \therefore \quad \angle \: 1 = 15^{\circ}}}[/tex]

[tex]{: \implies \quad \sf \angle \: 2 = {5x}^{\circ}}[/tex]

[tex]{: \implies \quad \sf \angle \: 2 = {5\times 33}^{\circ}}[/tex]

[tex]{\boxed{\bf \therefore \quad \angle \: 2 = {165}^{\circ}}}[/tex]

We are Done :D

We know that,

Sum of two angles in a linear pair = 180°

Therefore,

∠1 + ∠2 = 180°

=> (x - 18)° + 5x° = 180°

=> x° - 18° + 5x° = 180°

=> 6x° - 18° = 180°

=> 6x° = 180° + 18°

=> 6x° = 198°

=> x = 198°/ 6°

=> x = 33°

Now,

∠1 = (x - 18)°

= 33° - 18°

= 15°

∠2 = 5x°

= 5(33°)

= 165°

Therefore, the two angles are 15° and 165°