Write the equation of a circle given the center (-4, 4) and raduis r = 5.

Answer:
A) [tex](x+4)^2+(y-4)^2=25[/tex]
Step-by-step explanation:
The equation of a circle is [tex](x-h)^2+(y-k)^2=r^2[/tex] where [tex](h,k)[/tex] is the center and [tex]r[/tex] is the radius. If [tex](h,k)\rightarrow(-4,4)[/tex] and [tex]r=5[/tex], then:
[tex](x-h)^2+(y-k)^2=r^2\\\\(x-(-4))^2+(y-4)^2=5^2\\\\(x+4)^2+(y-4)^2=25[/tex]
Therefore, the equation of the circle is [tex](x+4)^2+(y-4)^2=25[/tex]