[tex]~\hfill \stackrel{\textit{\large distance between 2 points}}{d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ Q(\stackrel{x_1}{8}~,~\stackrel{y_1}{8})\qquad R(\stackrel{x_2}{14}~,~\stackrel{y_2}{16}) ~\hfill QR=\sqrt{[ 14- 8]^2 + [ 16- 8]^2} \\\\\\ QR=\sqrt{6^2+8^2}\implies QR=10 \\\\[-0.35em] ~\dotfill[/tex]
[tex]R(\stackrel{x_1}{14}~,~\stackrel{y_1}{16})\qquad S(\stackrel{x_2}{20}~,~\stackrel{y_2}{16}) ~\hfill RS=\sqrt{[ 20- 14]^2 + [ 16- 16]^2} \\\\\\ RS=\sqrt{6^2}\implies RS=6 \\\\[-0.35em] ~\dotfill\\\\ S(\stackrel{x_1}{20}~,~\stackrel{y_1}{16})\qquad T(\stackrel{x_2}{22}~,~\stackrel{y_2}{8}) ~\hfill ST=\sqrt{[ 22- 20]^2 + [ 8- 16]^2} \\\\\\ ST=\sqrt{2^2+(-8)^2}\implies ST=\sqrt{68} \\\\[-0.35em] ~\dotfill[/tex][tex]T(\stackrel{x_1}{22}~,~\stackrel{y_1}{8})\qquad Q(\stackrel{x_2}{8}~,~\stackrel{y_2}{8}) ~\hfill TQ=\sqrt{[ 8- 22]^2 + [ 8- 8]^2} \\\\\\ TQ=\sqrt{(-14)^2}\implies TQ=14 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{\large Perimeter}}{10~~ + ~~6~~ + ~~\sqrt{68}~~ + ~~14~~} \approx ~~ 38.25[/tex]