Respuesta :

Answer:

523.3 cm^3

Step-by-step explanation:

You have a formula for the volume of a sphere:  [tex]V=\frac{4}{3}\pi r^3[/tex] but to use it, you need the radius, r .

The panel on the left shows  c = 31.4 cm (I am assuming  c  is the circumference, like the distance around the "equator" of the sphere).

What's the relationship of circumference of a circle (equator) to the radius?

[tex]c=2\pi r[/tex]

So put 31.4 in for  c  in that last formula.

[tex]31.4 =2\pi r[/tex]

If you use the approximate value of pi  [tex]\pi \approx 3.14[/tex] that becomes

[tex]31.4 = 2(3.14)r\\\frac{31.4}{6.28} = r\\\\5=r[/tex]

Aha!  The radius r  is 5 cm.  Now go back to the formula for volume:

[tex]V=\frac{4}{3} (3.14)(5^3)\\V=\frac{4}{3}(3.14)(125)\\V \approx 523.3 \text{ cm^3}[/tex]