Mark the givens in the diagram then solve the problems. Given: AB=BD, AC=CD, HE=HG, HF⊥EG. Prove: ΔABC ≅ Δ DBC, Δ EHF≅Δ GHF

Answer:
AB=BD Given
AC=CD Given
BC=BC Reflexive property
ABC=DBC By SSS
HE=HG Given
HF perp. to EG Given
HF=HF Reflexive property
EHF=GHF by the hypotenuse leg thm.
Step-by-step explanation:
complete the proof