Respuesta :

Answer:

x = [tex]\sqrt{6}[/tex] , y = 2[tex]\sqrt{3}[/tex]

Step-by-step explanation:

using the tangent ratio and the exact value tan45° = 1 , then

tan45° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{x}{\sqrt{6} }[/tex] = 1 , then

x = [tex]\sqrt{6}[/tex]

----------------------------------

using the cosine ratio in the right triangle and the exact value

cos45° = [tex]\frac{1}{\sqrt{2} }[/tex] , then

cos45° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{\sqrt{6} }{y}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )

y = [tex]\sqrt{6}[/tex] × [tex]\sqrt{2}[/tex] = [tex]\sqrt{12}[/tex] = 2[tex]\sqrt{3}[/tex]