Respuesta :

Algebraic expressions are expressions that use variables and combination of terms.

How to determine the equivalent expressions

1. Addition

The addition expression is:

[tex]5x^2 - \frac 13x + \frac 52 - \frac 12x^2 + \frac 12x - \frac 13 -2x^2 + \frac 15x - \frac 16[/tex]

Collect like terms

[tex]5x^2 - \frac 12x^2 -2x^2 - \frac 13x + \frac 12x + \frac 15x + \frac 52 - \frac 13 - \frac 16[/tex]

Evaluate the like terms

[tex]\frac 52x^2 + \frac{11}{30}x + 2[/tex]

2. Subtraction

The subtraction expression is:

[tex]7x^2 -2x + 10 - (-2x^2 + \frac 12x - 3)[/tex]

Open the bracket

[tex]7x^2 -2x + 10 + 2x^2 - \frac 12x +3[/tex]

Collect like terms

[tex]7x^2 + 2x^2 -2x - \frac 12x+ 10 +3[/tex]

Evaluate the like terms

[tex]9x^2- \frac 52x+ 13[/tex]

3. Simplify

The expression is given as:

[tex](\frac 13x^2 - \frac 47x + 11) - (\frac 17x - 3 -2x^2) - (\frac 27x - \frac 23x^2 + 2)[/tex]

Rewrite as:

[tex](\frac 13x^2 - \frac 47x + 11) - ( -2x^2 + \frac 17x - 3) - (- \frac 23x^2 + \frac 27x + 2)[/tex]

Open the brackets

[tex]\frac 13x^2 - \frac 47x + 11 + 2x^2 - \frac 17x + 3+ \frac 23x^2 - \frac 27x - 2[/tex]

Collect like terms

[tex]\frac 13x^2 + 2x^2 + \frac 23x^2 - \frac 47x - \frac 17x - \frac 27x + 11 + 3 - 2[/tex]

Evaluate the like terms

[tex]3x^2 - x + 12[/tex]

4. Products

The expression is given as:

[tex](x-\frac 1x)(x + \frac 1x)(x^2 + \frac 1{x^2})(x^4 + \frac 1{x^4})[/tex]

Apply the difference of two squares

[tex](x^2-\frac 1{x^2})(x^2 + \frac 1{x^2})(x^4 + \frac 1{x^4})[/tex]

Apply the difference of two squares

[tex](x^4-\frac 1{x^4})(x^4 + \frac 1{x^4})[/tex]

Apply the difference of two squares

[tex]x^8 - \frac 1{x^8}[/tex]

5. Formula

The expression is given as:

[tex](\frac 32m + \frac 23n)(\frac 32m - \frac 23n)[/tex]

Apply the difference of two squares

[tex]\frac 94m^2 - \frac 49n^2[/tex]

6. Identity

The expression is given as:

[tex](m + 3)(m + 2)[/tex]

The identity used to solve the above expression is:

[tex](x + a)(x + b)[/tex]

7. Identity

The expression is given as:

[tex](4x + y)^2[/tex]

Expand

[tex]16x^2 + 8xy + y^2[/tex]

Rewrite as:

[tex]16x^2+ y^2 + 8xy[/tex]

8. Difference of two squares

The expression is given as:

[tex](a + b)(a - b)[/tex]

Apply the difference of two squares

[tex]a^2 - b^2[/tex]

9. Evaluate

The expression is given as:

[tex]a^2 + b^2[/tex]

Apply the sum of two squares

[tex](a + b)^2 - 2ab[/tex]

So, we have:

[tex]5^2 - 2 * 6[/tex]

Evaluate

[tex]13[/tex]

10. Coefficient

The expression is given as:

[tex]\frac x2 +\frac y2 - xy[/tex]

The coefficient of xy in the expression is -1

Read more about algebraic expressions at:

https://brainly.com/question/4344214