Respuesta :

Answer:

-2/3x + -4

Step-by-step explanation:

to get the equation of any straight line, we only need two points off of it, let's use those two on the picture below.

[tex](\stackrel{x_1}{2}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{8}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{8}-\stackrel{y1}{2}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{2}}}\implies \cfrac{6}{2}\implies 3[/tex]

[tex]\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{2}=\stackrel{m}{3}(x-\stackrel{x_1}{2}) \\\\\\ y-2=3x-6\implies y=3x-4[/tex]

Ver imagen jdoe0001