Answer:
12
Step-by-step explanation:
[tex]f(x)=x^2+2[/tex]
[tex]g(x)=1-3x[/tex]
[tex](fg)(x)=f(x) \times g(x)[/tex]
[tex]\implies (fg)(x)=(x^2+2)(1-3x)[/tex]
[tex](fg)(-1)=((-1)^2+2)(1-3(-1))[/tex]
[tex]\implies (fg)(-1)=(1+2)(1+3)[/tex]
[tex]\implies (fg)(-1)=12[/tex]
Extra:
If you were looking for f[g(-1)], then:
[tex]f[g(-1)]=f(4)=4^2+2=18[/tex]