Respuesta :

There are 1680 digits 2, 0, 2, and 2 as a 4-digit consecutively ordered block with no other digits between them

How to determine the selection

To determine the number of whole numbers, the following must be true

Case 1: If the sequence starts from the first digit

  • The first digit can be any of the three 2's (i.e. 3 digits)
  • The second digit can only be 0
  • The third digit can be any of the remaining 2's (i.e. 2 digits)
  • The fourth digit can only be the last 2 (i.e. 1 digit)
  • The fifth digit can be any of 0 - 9 (i.e. 10 digits)
  • The sixth digit can be any of 0 - 9 (i.e. 10 digits)

So, we have:

[tex]Case\ 1 = 3 * 1 * 2 * 1 * 10 * 10[/tex]

[tex]Case\ 1 = 600[/tex]

Case 2: If the sequence starts from the second digit

  • The first digit can be any of 1 - 9 (i.e. 9 digits)
  • The second digit can be any of the three 2's (i.e. 3 digits)
  • The third digit can only be 0
  • The fourth digit can be any of the remaining 2's (i.e. 2 digits)
  • The fifth digit can only be the last 2 (i.e. 1 digit)
  • The last digit can be any of 0 - 9 (i.e. 10 digits)

So, we have:

[tex]Case\ 2 = 9 * 3 * 1 * 2 * 1 * 10[/tex]

[tex]Case\ 2 = 540[/tex]

Case 2: If the sequence starts from the third digit

  • The first digit can be any of 1 - 9 (i.e. 9 digits)
  • The second digit can be any of 0 - 9 (i.e. 10 digits)
  • The third digit can be any of the three 2's (i.e. 3 digits)
  • The fourth digit can only be 0
  • The fifth digit can be any of the remaining 2's (i.e. 2 digits)
  • The last digit can only be the last 2 (i.e. 1 digit)

So, we have:

[tex]Case\ 3 = 9 * 10 * 3 * 1 * 2 * 1[/tex]

[tex]Case\ 3 = 540[/tex]

The total number of whole numbers is:

[tex]Total = 600 + 540 + 540[/tex]

[tex]Total = 1680[/tex]

Hence, there are 1680 6-digit whole numbers that the digits

Read more about combination and permutation at:

https://brainly.com/question/2292449