i si


what is w- z expressed in polar form?
Given wuv5c() + (.) and : ==(--(?) + ()
=(cos1 - +(cosin
o vz(cos() + i sin (4)
o v7(com () + ()
ovi (95) + ()
o r2(com () + i sin (7)
COS
i sin
ST
COS
+ i sin
77
o
+

i si what is w z expressed in polar form Given wuv5c and cos1 cosin o vzcos i sin 4 o v7com ovi 95 o r2com i sin 7 COS i sin ST COS i sin 77 o class=

Respuesta :

Answer:

[tex]w-z=\sqrt{2}\biggr(cos(\frac{3\pi}{4})+isin(\frac{3\pi}{4})\biggr)[/tex]

Step-by-step explanation:

Convert from polar to rectangular

[tex]w=\sqrt{2}(cos(\frac{\pi}{4})+isin(\frac{\pi}{4}))\\\\w=\sqrt{2}(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)\\ \\w=1+i[/tex]

[tex]z=2(cos(\frac{\pi}{2})+isin(\frac{\pi}{2}))\\ \\z=2(0+i)\\\\z=2i[/tex]

Subtract the complex numbers

[tex]w-z=(1+i)-2i=1+i-2i=1-i[/tex]

Convert from rectangular (x,y) to polar (r,θ)

[tex]r=\sqrt{x^2+y^2}\\r=\sqrt{1^2+(-1)^2}\\r=\sqrt{1+1}\\r=\sqrt{2}\\\\\theta=tan^{-1}(\frac{y}{x})\\ \theta=tan^{-1}(\frac{-1}{1})\\ \theta=tan^{-1}(-1)\\\theta=\frac{3\pi}{4}\\ \\w-z=\sqrt{2}\biggr(cos(\frac{3\pi}{4})+isin(\frac{3\pi}{4})\biggr)[/tex]