Respuesta :
Answer:
[tex]x=-2, y=-4[/tex]
Step-by-step explanation:
[tex]\left[\begin{array}{ccc}2 * \frac{-24 - 5y}{2}+ y= -8\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}-24-4y=-8\end{array}\right][/tex]
[tex]x=\frac{-24-5(-4)}{2}[/tex]
[tex]x=-2, y=-4[/tex]
Answer:
[tex]{x,y} = {-2,-4}[/tex]
Step-by-step explanation:
[tex]2x + 5y = -24 \\ 2x + y = -8[/tex] <---------- Linear equations given
Graphic Representation of the Equations : PICTURE
[tex]5y + 2x = -24 \\ y + 2x = -8[/tex]
Solve by Substitution :
// Solve equation [2] for the variable y
[tex][2] y = -2x - 8[/tex]
// Plug this in for variable y in equation [1]
[tex][1] 2x + 5*(-2x-8) = -24\\ [1] -8x = 16[/tex]
/ Solve equation [1] for the variable x
[tex][1] 8x = - 16 [1] x = - 2[/tex]
// By now we know this much :
[tex]x = -2 \\ y = -2x-8[/tex]
// Use the x value to solve for y
[tex]y = -2(-2)-8 = -4[/tex]
Solution :
[tex]{x,y} = {-2,-4}[/tex]
