Respuesta :

Answer:

[tex]x=-2, y=-4[/tex]

Step-by-step explanation:

[tex]\left[\begin{array}{ccc}2 * \frac{-24 - 5y}{2}+ y= -8\end{array}\right][/tex]

[tex]\left[\begin{array}{ccc}-24-4y=-8\end{array}\right][/tex]

[tex]x=\frac{-24-5(-4)}{2}[/tex]

[tex]x=-2, y=-4[/tex]

Answer:

[tex]{x,y} = {-2,-4}[/tex]

Step-by-step explanation:

[tex]2x + 5y = -24 \\ 2x + y = -8[/tex] <---------- Linear equations given

Graphic Representation of the Equations : PICTURE

[tex]5y + 2x = -24 \\ y + 2x = -8[/tex]

Solve by Substitution :

// Solve equation [2] for the variable  y

[tex][2] y = -2x - 8[/tex]

// Plug this in for variable  y  in equation [1]

[tex][1] 2x + 5*(-2x-8) = -24\\ [1] -8x = 16[/tex]

/ Solve equation [1] for the variable  x

[tex][1] 8x = - 16 [1] x = - 2[/tex]

// By now we know this much :

[tex]x = -2 \\ y = -2x-8[/tex]

// Use the  x  value to solve for  y

[tex]y = -2(-2)-8 = -4[/tex]

Solution :

[tex]{x,y} = {-2,-4}[/tex]

Ver imagen Аноним