[tex]\underline{\boxed{\blue{\Large{\bf{Hello\:Brainlians}}}}}[/tex]

Find the area of the triangle formed by the likes joining the vertex of the parabola x^2=12y to the ends of its latus rectum .


[tex]\boxed{\sf{Note:-}}[/tex]

[tex]\\ \tt\hookrightarrow Spams, plagarised\: from \:web , Short \:answers \:will \:be \:deleted\; on\:the\:spot.[/tex]

[tex]\\ \tt\hookrightarrow Make\:sure\:you\:provide\:step\:by\:step\: solution\: without\: omitting\:any\:step.[/tex]
[tex]\\ \tt\hookrightarrow Attach\:the\: Diagram\:for\: solution.[/tex]


[tex]\boxed{\bf All\:the\:best!}[/tex]​

Respuesta :

Hi there!

Parabola x² = 12y

→ x² = 4ay

→ 4a = 12

→ a = 12÷4

→ a = 3

So, the co-ordinates of the focus is:-

S(0,a)=(0,3)

Let AB be the latus rectum of the given parabola.

→ Coordinates of end-points of latus rectum are (-2a,a), (2a,a)

→ Coordinates of A are (-6,3), while B's coordinates are (6,3).

→ ∆OAB are O(0,0), A(-6,3), B(6,3)

Area of ∆OAB is :-

(Solving part attached as image)

=> 18 unit² is the required answer.

Ver imagen Аноним
Ver imagen Аноним

Answer:

18 sq. unit

Step-by-step explanation:

Parabola is x²=12y

On comparing it with

→x²=4ay

→4a=12

→a=12/4

→a=3

Finding the value of x.

→x²=12y

→x²=12×3

→x²=36

→x=√36

→x=6

When we have a=3 and x=6

(-x1,a)=(-6,3)

(x1,a)=(6,3)

Let,

(x1,y1)=(0,0)

(x2,y2)=(6,3)

(x3,y3)(-6,3)

Now,

Area=[tex]=\frac{1}{2} *b*h\\\\=\frac{1}{2} [x1(y2-y3)+x2(y3-y1)+x3(y1-y2)\\\\=\frac{1}{2} [0(3-3)+6(3-0)+(-6)(0-3)\\\\=\frac{1}{2} [18+18]\\\\\\=18.sq.units[/tex]

Ver imagen Nepalieducation