Respuesta :
Hi there!
Parabola x² = 12y
→ x² = 4ay
→ 4a = 12
→ a = 12÷4
→ a = 3
So, the co-ordinates of the focus is:-
S(0,a)=(0,3)
→ Let AB be the latus rectum of the given parabola.
→ Coordinates of end-points of latus rectum are (-2a,a), (2a,a)
→ Coordinates of A are (-6,3), while B's coordinates are (6,3).
→ ∆OAB are O(0,0), A(-6,3), B(6,3)
Area of ∆OAB is :-
(Solving part attached as image)
=> 18 unit² is the required answer.


Answer:
18 sq. unit
Step-by-step explanation:
Parabola is x²=12y
On comparing it with
→x²=4ay
→4a=12
→a=12/4
→a=3
Finding the value of x.
→x²=12y
→x²=12×3
→x²=36
→x=√36
→x=6
When we have a=3 and x=6
(-x1,a)=(-6,3)
(x1,a)=(6,3)
Let,
(x1,y1)=(0,0)
(x2,y2)=(6,3)
(x3,y3)(-6,3)
Now,
Area=[tex]=\frac{1}{2} *b*h\\\\=\frac{1}{2} [x1(y2-y3)+x2(y3-y1)+x3(y1-y2)\\\\=\frac{1}{2} [0(3-3)+6(3-0)+(-6)(0-3)\\\\=\frac{1}{2} [18+18]\\\\\\=18.sq.units[/tex]
