In right triangle ABC, C is the right angle. What does sinB equal? options: sinB, cosB, cosA, not enough information

Respuesta :

Answer:

Answer: cos(A)

Step-by-step explanation:

» From trigonometry,

[tex]{ \tt{ \sin( \theta) = \frac{opposite}{hypotenuse} }} \\ [/tex]

[tex]{ \tt{ \red{ \sin(B) = \frac{AC}{AB} }}} \\ [/tex]

» For cosine:

[tex]{ \tt{ \cos( \theta) = \frac{adjacent}{hypotenuse} }} \\ \\ { \red{ \tt{ \cos(A) = \frac{AC}{AB} }}}[/tex]

» Therefore, sinB = cosA

Ver imagen brainsoft

Answer:

Not enough information

explanation:

Taking sin here:

∠A + ∠B + ∠C = 180°

∠A + ∠B + 90 = 180°

∠A + ∠B = 90°

sin(A) + sin(B) = sin(90)

sin(B) = 1 - sin(A)

Taking cos here:

∠A + ∠B + ∠C = 180°

∠A + ∠B + 90 = 180°

∠A + ∠B = 90°

cos(A) + cos(B) = cos(90)

cos(A) + cos(B) = 0

cos(B) = -cos(A)