Respuesta :
Answer:
Answer: cos(A)
Step-by-step explanation:
» From trigonometry,
[tex]{ \tt{ \sin( \theta) = \frac{opposite}{hypotenuse} }} \\ [/tex]
[tex]{ \tt{ \red{ \sin(B) = \frac{AC}{AB} }}} \\ [/tex]
» For cosine:
[tex]{ \tt{ \cos( \theta) = \frac{adjacent}{hypotenuse} }} \\ \\ { \red{ \tt{ \cos(A) = \frac{AC}{AB} }}}[/tex]
» Therefore, sinB = cosA

Answer:
Not enough information
explanation:
Taking sin here:
∠A + ∠B + ∠C = 180°
∠A + ∠B + 90 = 180°
∠A + ∠B = 90°
sin(A) + sin(B) = sin(90)
sin(B) = 1 - sin(A)
Taking cos here:
∠A + ∠B + ∠C = 180°
∠A + ∠B + 90 = 180°
∠A + ∠B = 90°
cos(A) + cos(B) = cos(90)
cos(A) + cos(B) = 0
cos(B) = -cos(A)