Respuesta :

Answer:

  a. length: 20-2x; width: 12-2x; height: x

  b. V = 4x^3 -64x^2 +240x

  c. cubic trinomial

  d. 262.7 cubic inches maximum for a 2.4 inch square

  e. 15 × 7 × 2.5 inches for 262.5 in³ volume

Step-by-step explanation:

a.

If the square cut from each corner has side length x, the dimensions are ...

  • height: x
  • width: 12 -2x
  • length: 20 -2x

__

b.

The volume is the product of length, width, and height.

  V = LWH

  V = (20 -2x)(12-2x)(x) = 4(x-10)(x-6)x = 4(x^2 -16x +60)x

  V = 4x^3 -64x^2 +240x

__

c.

The volume function is a cubic trinomial.

__

d.

The maximum volume will be found where the derivative of the volume function is zero.

  V' = 12x^2 -128x +240 = 0

  x^2 -32/3x +20 = 0 . . . . divide by 12

  (x -16/3)^2 = 76/9 . . . . . complete the square

  x = (16 -√76)/3 ≈ 2.4 . . . . size of the square

  V = 4(2.4)(10 -2.4)(6 -2.4) ≈ 262.7 . . . cubic inches

The maximum box volume is about 262.7 cubic inches when the square is about 2.4 inches on each side.

__

e.

A graphing calculator shows there to be two solutions for a volume of 262.5 cubic inches. The rational solution is x = 2.5 inches. The box dimensions would be ...

  • length = 20 -2(2.5) = 15 inches
  • width = 12 -2(2.5) = 7 inches
  • height = 2.5 inches

Ver imagen sqdancefan