Find the area of the composite figure.

Answer:
The Area of the composite figure would be 76.26 in^2
Step-by-step explanation:
According to the Figure Given:
Total Horizontal Distance = 14 in
Length = 6 in
To Find :
The Area of the composite figure
Solution:
Firstly we need to find the area of Rectangular part.
So We know that,
[tex]\boxed{ \rm \: Area \: of \: Rectangle = Length×Breadth}[/tex]
Here, Length is 6 in but the breadth is unknown.
To Find out the breadth, we’ll use this formula:
[tex] \boxed{\rm \: Breadth = total \: distance - Radius}[/tex]
According to the Figure, we can see one side of a rectangle and radius of the circle are common, hence,
[tex] \longrightarrow\rm \: Length \: of \: the \: circle = Radius[/tex]
[tex]\longrightarrow \rm \: 6 \: in = radius[/tex]
Hence Radius is 6 in.
So Substitute the value of Total distance and Radius:
[tex] \longrightarrow\rm \: Breadth = 14-6[/tex]
[tex] \longrightarrow\rm \: Breadth = 8 \: in[/tex]
Hence, the Breadth is 8 in.
Then, Substitute the values of Length and Breadth in the formula of Rectangle :
[tex] \longrightarrow\rm \: Area \: of \: Rectangle = 6 \times 8[/tex]
[tex]\longrightarrow \rm \: Area \: of \: Rectangle = 48 \: in {}^{2} [/tex]
Then, We need to find the area of Quarter circle :
We know that,
[tex]\boxed{\rm Area_{(Quarter \; Circle) } = \cfrac{\pi{r} {}^{2} }{4}} [/tex]
Now Substitute their values:
[tex]\longrightarrow\rm Area_{(Quarter \; Circle) } = \cfrac{3.14 \times 6 {}^{2} }{4} [/tex]
Solve it.
[tex]\longrightarrow\rm Area_{(Quarter \; Circle) } = \cfrac{3.14 \times 36}{4} [/tex]
[tex]\longrightarrow\rm Area_{(Quarter \; Circle) } = \cfrac{3.14 \times \cancel{{36} } \: ^{9} }{ \cancel4} [/tex]
[tex]\longrightarrow\rm Area_{(Quarter \; Circle)} =3.14 \times 9[/tex]
[tex]\longrightarrow\rm Area_{(Quarter \; Circle) } = 28.26 \: {in}^{2} [/tex]
Now we can Find out the total Area of composite figure:
We know that,
[tex]\boxed{ \rm \: Area_{(Composite Figure)} =Area_{(rectangle)}+ Area_{ (Quarter Circle)}}[/tex]
So Substitute their values:
[tex]\longrightarrow \rm \: Area_{(Composite Figure)} =48 + 28 .26[/tex]
Solve it.
[tex]\longrightarrow \rm \: Area_{(Composite Figure)} =\boxed{\tt 76.26 \:\rm in {}^{2}} [/tex]
Hence, the area of the composite figure would be 76.26 in² or 76.26 sq. in.
[tex] \rule{225pt}{2pt}[/tex]
I hope this helps!