The half–life of rubidium–89 is 15 minutes. If the initial mass of the isotope is 250 grams, how many grams will be left after 100 minutes?

Respuesta :

Answer:

32.5 grams  will be left after 100 minutes.                        

Step-by-step explanation:

Given : The half–life of rubidium–89 is 15 minutes. If the initial mass of the isotope is 250 grams.

To find : How many grams will be left after 100 minutes?          

Solution :

Let the exponential equation of rubidium is [tex]Q=Q_oe^{rt}[/tex]

Where, [tex]Q_o=250[/tex] is the initial value

t is the time taken i.e. t=15 minutes

The half–life of rubidium–89 is 15 minutes.

i.e. [tex]Q=\frac{Q_o}{2}[/tex]

Substitute in the formula,

[tex]\frac{Q_o}{2}=Q_oe^{r\times 15}[/tex]

[tex]\frac{1}{2}=e^{r\times 15}[/tex]

Taking log both side,

[tex]\log (\frac{1}{2})=r\times 15[/tex]

[tex]-0.301=r\times 15[/tex]

[tex]\frac{-0.301}{15}=r[/tex]

[tex]r=-0.02[/tex]

Now, we have to find Q in 100 minutes,

[tex]Q=Q_oe^{rt}[/tex]

Substitute in the formula,

[tex]Q=250e^{-0.02\times 100}[/tex]

[tex]Q=250e^{-2}[/tex]

[tex]Q=250\times 0.13[/tex]

[tex]Q=32.5[/tex]

Therefore, 32.5 grams  will be left after 100 minutes.

Answer:

A. 2.46 grams

Explanation:

I got it correct in my test

Ver imagen websitetechie