Answer:
[tex]\boxed{\boxed{ \tt \: x = 30 {}^{ \circ}}} [/tex]
Step-by-step explanation:
The Given two angles are complementary angles .
The Two angles are 2x° and x°.[Given]
[Two angles are called complementary if their sum is 90°. Each angle is a complement to each other.]
We need to find the value of x.
So,
[tex] \tt2x {}^{ \circ} + {x}^{ \circ} = 90{}^{ \circ} [/tex]
Solve this equation.
[tex]\tt \implies(2x + {x} ){}^{ \circ} = 90{}^{ \circ} [/tex]
Combine the like terms:
[tex]\tt3x{}^{ \circ} = 90{}^{ \circ} [/tex]
Divide both sides by 3 :
[tex] \tt \implies \cfrac{3x{}^{ \circ} }{3{}^{ \circ} } = \cfrac{90{}^{ \circ} }{3{}^{ \circ} } [/tex]
Cancel the LHS and RHS:
[tex] \tt \implies \cfrac{ \cancel{3x{}^{ \circ}} }{ \cancel{3{}^{ \circ}} } = \cfrac{ \cancel{90}{}^{ \circ} }{ \cancel{3{}^{ \circ}} } [/tex]
[tex] \tt \implies \cfrac{1x{}^{ \circ} }{1{}^{ \circ} } = \cfrac{30{}^{ \circ} }{1{}^{ \circ} } [/tex]
[tex] \tt \implies 1x{}^{ \circ} = 30{}^{ \circ} [/tex]
[tex] \tt \implies x{}^{ \circ} = 30{}^{ \circ} [/tex]
[tex] \tt \implies x{}^{ \circ} = 30{}^{ \circ} [/tex]
Hence, the value of x° would be 30°.
[tex] \rule{225pt}{2pt}[/tex]
I hope this helps!