Respuesta :

Answer:

[tex]let \: the \: numbers \: be \: x \: and \: y \\ then \\ [/tex]

[tex]x + y = 201(equation \: 1) \\ x - y = 69(equation \: 2)[/tex]

According to 2nd equation

[tex]x = 69 + y[/tex]

Putting the value of x in the first equation

[tex]69 + y + y = 201 \\ \implies \: 69 + 2y = 201 \\ \implies \: 2y = 201 - 69 \\ \implies \: y = \frac{132}{2} [/tex]

[tex] \implies \: y = 66[/tex]

We know that

[tex]x = y + 69 \\ \implies \: x = 66 + 69 \\ \implies \: x = 135[/tex]

If you have any doubts you can comment and ask

Answer:

135 and 66

Step-by-step explanation:

Solve the system of equations

Equation 1: x + y = 201

Equation 2: x - y = 69