[tex]\begin{array}{llll} \textit{logarithm of factors} \\\\ \log_a(xy)\implies \log_a(x)+\log_a(y) \end{array} ~\hfill \begin{array}{llll} \textit{Logarithm of exponentials} \\\\ \log_a\left( x^b \right)\implies b\cdot \log_a(x) \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \log(d)+x\log(9)\implies \log(d)+x\log(3^2)\implies \log(d)+\log[(3^2)^x] \\\\\\ \log(d)+\log(3^{2x})\implies \log(d\cdot 3^{2x})\implies \log(d3^{2x})[/tex]