Respuesta :

Answer:

17.3 m/s  (1 d.p.)

Explanation:

Kinetic Energy

[tex]E_k=\sf \dfrac{1}{2}mv^2[/tex]

where:

  • [tex]E_k[/tex] = kinetic energy in joules (J)
  • m = mass in kilograms (kg)
  • v = speed in meters per second (m/s)

Gravitational potential energy

[tex]E_p=\sf mgh[/tex]

where:

  • [tex]E_p[/tex] = gravitational potential energy in joules (J)
  • m = mass in kilograms (kg)
  • g = gravitational field strength in newtons per kilogram (N/kg)
  • h = change in height in meters (m)

Principle of Conservation of Energy

Gravitational potential energy at the top = kinetic energy at the bottom

[tex]\implies \large \text{$ E_{p \sf (top)}=E_{k \sf(bottom)} $}[/tex]

Given:

  • m = 5.0 kg
  • h = 15 m

The gravitational field strength of the Earth is 10 N/kg (10 newtons per kilogram), therefore:

  • g = 10 N/kg

Substituting the values into the formula and solving for v:

[tex]\implies \large \text{$ E_{p \sf (top)}=E_{k \sf(bottom)} $}[/tex]

[tex]\implies \sf mgh=\dfrac{1}{2}mv^2[/tex]

[tex]\implies \sf (5.0)(10)(15)=\dfrac{1}{2}(5.0)v^2[/tex]

[tex]\implies \sf 750=\dfrac{5}{2}v^2[/tex]

[tex]\implies \sf v^2=300[/tex]

[tex]\implies \sf v=\sqrt{300}[/tex]

[tex]\implies \sf v=17.3\:\: m/s \:\: (1\:d.p.)[/tex]

Apply law of conservation of energy

  • PE=KE
  • mgh=1/2mv²
  • 2gh=v²
  • v²=2(10)(15)
  • v²=300
  • v=17.3m/s