Using the Pythagorean
Theorem, find the distance
between the points (-3, -3) and
(7,6)
The distance is: Units
(round to the nearest tenth)

Respuesta :

Answer:

  • 13.5 units

Step-by-step explanation:

Use distance formula:

  • [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Substitute the coordinates:

  • [tex]d = \sqrt{(-3-7)^2+(-3-6)^2} =\sqrt{10^2+9^2} =\sqrt{181} =13.5[/tex] rounded
  • No need of getting confused about using Pythagorean theorem. Question is indirectly saying to apply distance formula
  • P(-3,-3)
  • Q(7,6)

[tex]\\ \sf\longmapsto PQ=\sqrt{(7+3)^2+(6+3)^2}[/tex]

[tex]\\ \sf\longmapsto PQ=\sqrt{(10)^2+(9)^2}[/tex]

[tex]\\ \sf\longmapsto PQ=\sqrt{100+81}[/tex]

[tex]\\ \sf\longmapsto PQ=\sqrt{181}[/tex]

[tex]\\ \sf\longmapsto PQ\approx 13.4units[/tex]