Respuesta :

Answer:

[tex]y = - \frac{5}{4} x - \frac{1}{2} [/tex]

Step-by-step explanation:

Slope-intercept form: y= mx +c, where m is the slope and c is the y-intercept.

[tex]\boxed{ slope = \frac{y _{1} - y_2 }{x_1 - x_2} }[/tex]

Slope

[tex] = \frac{ - 3 - \frac{1}{8} }{2 - ( - \frac{1}{2}) } [/tex]

[tex] = - \frac{5}{4} [/tex]

Substitute the value of m into the equation:

[tex]y = - \frac{5}{4} x + c[/tex]

To find the value of c, substitute a pair of coordinates the line passes through into the equation.

When x= 2, y= -3,

[tex] - 3 = - \frac{5}{4} (2) + c[/tex]

[tex] - 3 = - \frac{5}{2} + c[/tex]

[tex]c = - 3 + \frac{5}{2} [/tex]

[tex]c = - \frac{1}{2} [/tex]

Thus, the equation of the line is [tex]y = - \frac{5}{4} x - \frac{1}{2} [/tex].