Which expression is equivalent to 1/27 ( 1 over 27 ) ?
A.3^1 x 3^-10
B. 3^-1 x 3^10
C. 3^-4 x 3^7
D. 3^4 x 3^-7

Respuesta :

Answer:

Option D

Step-by-step explanation:

Option A:

(3)¹ × (3)⁻¹⁰   =  (3)⁽¹⁻¹⁰⁾   = 3⁹

= [tex]4\frac{1}{3^9}[/tex]

= [tex]4\frac{1}{19683}[/tex]

Option B :

(3)⁻¹ × (3) ¹⁰   = 3⁽¹⁰⁻¹⁾

= 3⁹

= 19683

Option C :

(3⁻⁴) × (3)⁷   = 3⁽⁷⁻⁴⁾

               = 3³

Option D :

3⁴ × 3⁻⁷ = 3⁴⁻⁷

= 3⁻³

=  [tex]4\frac{1}{3^3}[/tex]

= [tex]4\frac{1}{27}[/tex]

Therefore, option D is the answer.

The expression equivalent to [tex]\frac{1}{{27}}[/tex]is[tex]\boxed{{\mathbf{Option D}}-{{\mathbf{3}}^{\mathbf{4}}}{\mathbf{ \times }}{{\mathbf{3}}^{{\mathbf{-7}}}}}[/tex].

Further explanation:

The expression is given as[tex]\frac{1}{{27}}[/tex].

Now, the above expression is simplified as follows:

[tex]\begin{aligned}\frac{1}{{27}}&=\frac{1}{{3 \times 3 \times 3}}\\&=\frac{1}{{{3^3}}}\\\end{aligned}[/tex]

Now, the power rule for rational exponent is given below.

The expression [tex]{a^{ - n}}[/tex] equivalent to expression [tex]\frac{1}{{{a^n}}}[/tex] that is[tex]\boxed{\frac{{\mathbf{1}}}{{\mathbf{a}}}{\mathbf{ = }}{{\mathbf{a}}^{{\mathbf{ - n}}}}}[/tex].

In the expression[tex]\frac{1}{{{3^3}}}[/tex], the value of [tex]a = 3[/tex]and[tex]n = 3[/tex].

The simplified form of the expression [tex]\frac{1}{{{3^3}}}[/tex] as follows:

[tex]\begin{aligned}\frac{1}{{{3^3}}}&={3^{-3}}\\&={3^{\left({-7+4}\right)}}\\\end{aligned}[/tex]

From the exponent rule[tex]\boxed{{{\mathbf{a}}^{{\mathbf{m + n}}}}{\mathbf{ = }}{{\mathbf{a}}^{\mathbf{m}}}{\mathbf{ \times }}{{\mathbf{a}}^{\mathbf{n}}}}[/tex], the above expression is evaluated as follows:

[tex]\begin{aligned}\frac{1}{{27}}&={3^{\left({-7+4}\right)}}\\&={3^{\left({ - 7} \right)}}\cdot {3^4}\\\end{aligned}[/tex]

Therefore, the expression equivalent to [tex]\frac{1}{{27}}[/tex]is[tex]\boxed{{{\mathbf{3}}^{\mathbf{4}}}{\mathbf{ \times }}{{\mathbf{3}}^{{\mathbf{ - 7}}}}}[/tex].

Now, the four options are given below.

[tex]\begin{aligned}&{\text{OPTION A}}\to{{\text{3}}^1}\times {3^{ - 10}}\hfill\\&{\text{OPTION B}}\to{{\text{3}}^{-1}}\times {3^{10}}\hfill\\&{\text{OPTION C}}\to{{\text{3}}^{-4}}\times {3^7}\hfill\\&{\text{OPTION D}}\to{{\text{3}}^4}\times{3^{-7}}\hfill\\\end{aligned}[/tex]

Here, OPTION A is[tex]{{\text{3}}^1} \times {3^{ - 10}}[/tex].

The simplified form of OPTION A [tex]{{\text{3}}^1} \times {3^{ - 10}}[/tex] is given below.

[tex]\begin{aligned}{{\text{3}}^1}\times{3^{-10}}&={3^{1+\left({-10}\right)}}\\&={3^{1-10}}\\&={3^{-9}}\\\end{aliged}[/tex]

The above solution [tex]{3^{-9}}[/tex] of the expression [tex]{{\text{3}}^1}\times{3^{-10}}[/tex]does not matches with the obtained solution[tex]{3^4}\times{3^{-7}}[/tex].

The simplified form of OPTION B [tex]{{\text{3}}^{-1}}\times{3^{10}}[/tex] is given below.

[tex]\begin{aligned}{{\text{3}}^{-1}}\times{3^{10}}&={3^{-1+10}}\\&={3^9}\\\end{aligned}[/tex]

The above solution [tex]{3^9}[/tex] of the expression [tex]{{\text{3}}^{-1}}\times{3^{10}}[/tex]does not matches with the obtained solution[tex]{3^4}\times{3^{-7}}[/tex].

The simplified form of OPTION C [tex]{{\text{3}}^{-4}}\times{3^7}[/tex] is given below.

[tex]\begin{aligned}{{\text{3}}^{-4}}\times{3^7}&={3^{-4+7}}\\&={3^3}\\\end{aligned}[/tex]

The above solution [tex]{3^3}[/tex] of the expression [tex]{{\text{3}}^{-4}}\times{3^7}[/tex]does not matches with the obtained solution[tex]{3^4}\times{3^{-7}}[/tex].

OPTION D is given as [tex]{3^4}\times{3^{-7}}[/tex]and it matches with the obtained solution[tex]{3^4}\times{3^{-7}}[/tex].

From above four options, the expression equivalent to [tex]\frac{1}{{27}}[/tex]is[tex]{{\mathbf{3}}^{\mathbf{4}}}{\mathbf{ \times }}{{\mathbf{3}}^{{\mathbf{ - 7}}}}[/tex].

Thus, the expression equivalent to [tex]\frac{1}{{27}}[/tex]is[tex]\boxed{{\mathbf{Option D}} - {{\mathbf{3}}^{\mathbf{4}}}{\mathbf{ \times }}{{\mathbf{3}}^{{\mathbf{ - 7}}}}}[/tex].

Learn more:

1. Which expression is equivalent to ?https://brainly.com/question/3658196

2. What are the values of x?https://brainly.com/question/2093003

3. Which expression is a sum of cubes?https://brainly.com/question/4102355

Answer Details:

Grade: Junior High School

Subject: Mathematics

Chapter: Exponents and expressions

Keywords:expression, exponent, power exponent, equivalent, match, options,[tex]{3^4} \times {3^{ - 7}}[/tex],[tex]\frac{1}{{27}}[/tex]