Respuesta :
Answer:
12
Step-by-step explanation:
Using formula
distance = [tex]\sqrt{ (y2 - y1)^{2} + (x2- x1)^2}[/tex]
Then input the values:
Distance = [tex]\sqrt{ (0 - 0)^{2} + (-8- 4)^2}[/tex]
= [tex]\sqrt{0 + 144}[/tex]
= 12
Given are two values.
Let :-
[tex]4 = {x}^{1} [/tex]
[tex]0 = {y}^{1} [/tex]
[tex] - 8 = {x}^{2} [/tex]
[tex]0 = {y}^{2} [/tex]
By distance formula,
[tex] \sqrt{ ({x}^{2} - {x}^{1})^{2} + ( {y}^{2} - {y}^{1})^{2} }[/tex]
[tex] \sqrt{ (- 8 - 4)^{2} + (0 - 0) ^{2} } [/tex]
[tex] \sqrt{( - 12)^{2} + 0^{2} } [/tex]
[tex] \sqrt{144 + 0} [/tex]
[tex] 12[/tex]
Therefore, the distance is 12