The gravitational force between two massive objects is directly proportional to the product of masses. The value of the gravitational force between Mars and Phobos is[tex]5. 16 \times 10^2^1 \rm \ N[/tex].
[tex]F=G{\dfrac{m_1m_2}{r^2}}[/tex]
Where,
[tex]F[/tex] = Force
[tex]G[/tex] = Gravitational constant = [tex]\bold {6.67 x 10^{-11 }}[/tex]N.m²/kg²
[tex]m_1[/tex] = Mass of Mars = [tex]\bold {6. 42 \times 10^{23 }\rm \ kg}[/tex]
[tex]m_2[/tex] = Mass of Phobos = [tex]\bold {1.06 \times 10^{16 }\rm \ kg}[/tex]
[tex]r[/tex] = Distance between centers of the masses = 9378 km
Put the values in the formula,
[tex]F=\bold {6.67 x 10^{-11 }}{\dfrac{\bold {6. 42 \times 10^{23 }\rm \ kg}\times \bold {1.06 \times 10^{16 }\rm \ kg}}{9378 ^2}}\\\\F= 5. 16 \times 10^2^1 \rm \ N[/tex]
Therefore, the value of the gravitational force between Mars and Phobos is[tex]5. 16 \times 10^2^1 \rm \ N[/tex].
Learn more about Newton's law of universal gravitation: https://brainly.com/question/858421