Hi can someone please give me the answer to this question and please include the math so I can understand how you got it :)

Answer:
The value of x is 51⁰.
Step-by-step explanation:
Solution :
Here we can see that the given figure is complete angle.
As we know that the complete angle is a type of angle that measures 360°.
Now, finding the value of x.
[tex]{\longrightarrow{\sf{{35}^{0} + (2x + 16)^{0} + (4x + 3)^{0} = {360}^{0}}}}[/tex]
[tex]{\longrightarrow{\sf{(4x + 2x) + ( {35}^{0} + {3}^{0} + {16}^{0}) = {360}^{0}}}}[/tex]
[tex]{\longrightarrow{\sf{(6x) + ({38}^{0} + {16}^{0}) = {360}^{0}}}}[/tex]
[tex]{\longrightarrow{\sf{(6x) + ({54}^{0}) = {360}^{0}}}}[/tex]
[tex]{\longrightarrow{\sf{6x + {54}^{0}= {360}^{0}}}}[/tex]
[tex]{\longrightarrow{\sf{6x = {360}^{0} - {54}^{0}}}}[/tex]
[tex]{\longrightarrow{\sf{6x = {306}^{0}}}}[/tex]
[tex]{\longrightarrow{\sf{x = \dfrac{306}{6}}}}[/tex]
[tex]{\longrightarrow{\sf{x = {51}^{0}}}}[/tex]
[tex]\star{\underline{\boxed{\sf{\red{x = {51}^{0}}}}}}[/tex]
Hence, the value of x is 51⁰.
[tex]\rule{300}{2.5}[/tex]