Respuesta :
1) The pairs [tex](x, y) = (2 + \sqrt{7}, 2 - \sqrt{7})[/tex] and [tex](x, y) = (2 - \sqrt{7}, 2 + \sqrt{7})[/tex] are solutions of the system.
2) The quadratic formula has conjugated complex roots for [tex]k \in (-36, 36)[/tex].
3) The pairs [tex](x, y) = (5 + \sqrt{47}, 5 - \sqrt{47})[/tex] and [tex](x, y) = (5 - \sqrt{47}, 5 + \sqrt{47})[/tex] are solutions of the system.
4) The complex number [tex]z = \frac{1-i}{2+3\cdot i}[/tex] is equal to the complex number [tex]-\frac{1}{13}-\frac{5}{13}\cdot i[/tex].
5) [tex]1.25[/tex] is the smallest value that satisfies the quadratic equation [tex]8\cdot x^{2}-38\cdot x + 35 = 0[/tex].
Procedure - Miscellaneous on quadratic functions and complex numbers
1) Pair of real numbers within a system of equations (I)
We need to solve the following system of equations to determine at least one pair of real numbers that are its solution:
[tex]x+y = 4[/tex] (1)
[tex]x^{3} + y^{3} = 100[/tex] (2)
By (1) in (2) we have the following expression.
[tex](4-y)^{3} + y^{3} = 100[/tex]
[tex]y^{2}-48\cdot y -36 = 0[/tex] (3)
Whose solutions are: [tex]y_{1} = 2 + \sqrt{7}[/tex], [tex]y_{2} = 2 - \sqrt{7}[/tex]
And by (1) we find the respective solutions for [tex]x[/tex]: [tex]x_{1} = 2-\sqrt{7}[/tex], [tex]x_{2} = 2 +\sqrt{7}[/tex].
In a nutshell, the pairs [tex](x, y) = (2 + \sqrt{7}, 2 - \sqrt{7})[/tex] and [tex](x, y) = (2 - \sqrt{7}, 2 + \sqrt{7})[/tex] are solutions of the system. [tex]\blacksquare[/tex]
2) Real values associated to conjugated complex roots of a quadratic formula
By the Quadratic Formula we understand that roots of
[tex]12\cdot x^{2}+k\cdot x + 27 = 0[/tex] are conjugated complex if and only if the following condition is observed:
[tex]d^{2} = k^{2}-1296 < 0[/tex] (4)
Where [tex]d[/tex] is the discriminant of the quadratic formula.
After some mathematical handling we have the following result:
[tex]k^{2} < 1296[/tex]
[tex]-36 < k < 36[/tex]
Hence, the quadratic formula has conjugated complex roots for [tex]k \in (-36, 36)[/tex]. [tex]\blacksquare[/tex]
3) Pair of real numbers within a system of equations (II)
By using the approach used in part 1), we find that the resulting polynomial is [tex]2\cdot y^{2} -20\cdot y -44 = 0[/tex] for [tex]x = 10-y[/tex], whose solutions are [tex](x,y) = (5 + \sqrt{47}, 5 - \sqrt{47})[/tex] and [tex](x,y) = (5-\sqrt{47}, 5+\sqrt{47})[/tex].
In a nutshell, the pairs [tex](x, y) = (5 + \sqrt{47}, 5 - \sqrt{47})[/tex] and [tex](x, y) = (5 - \sqrt{47}, 5 + \sqrt{47})[/tex] are solutions of the system. [tex]\blacksquare[/tex]
4) Simplification of a complex number
Let be [tex]z = \frac{1-i}{2+3\cdot i}[/tex], we proceed to simplify the expression by means of complex algebra:
[tex]\frac{1-i}{2+3\cdot i} = \frac{(1-i)\cdot (2-3\cdot i)}{(2+3\cdot i)\cdot (2-3\cdot i)} = \frac{2-5\cdot i + 3\cdot i^{2}}{2^{2}+3^{2}} = -\frac{1}{13} -\frac{5}{13} \cdot i[/tex]
The complex number [tex]z = \frac{1-i}{2+3\cdot i}[/tex] is equal to the complex number [tex]-\frac{1}{13}-\frac{5}{13}\cdot i[/tex]. [tex]\blacksquare[/tex]
5) Determination of the least root by the quadratic formula
Let be [tex]8\cdot x^{2}-38\cdot x + 35 = 0[/tex], whose roots are contained in the following quadratic formula:
[tex]x = \frac{38\pm \sqrt{(-38)^{2}-4\cdot (8)\cdot (35)}}{2\cdot (8)}[/tex]
Whose solutions are: [tex]x_{1} = 3.5[/tex] and [tex]x_{2} = 1.25[/tex]. We notice that the latter root is the smallest value of [tex]x[/tex]. In consequence, we conclude that [tex]1.25[/tex] is the smallest value that satisfies the quadratic equation [tex]8\cdot x^{2}-38\cdot x + 35 = 0[/tex]. [tex]\blacksquare[/tex]
Remark
The statement is poorly formatted. Correct form is presented below:
- Find one pair [tex](x,y)[/tex] of real numbers such that [tex]x+y = 4[/tex] and [tex]x^{3} + y^{3} = 100[/tex].
- For what real values of [tex]k[/tex] does the quadratic [tex]12\cdot x^{2}+k\cdot x + 27 = 0[/tex] have nonreal roots? Enter your answer as an interval.
- Find all pairs [tex](x,y)[/tex] of real numbers such that [tex]x+y = 10[/tex] and [tex]x^{2}+y^{2} = 56[/tex].
- Simplify [tex]\frac{1-i}{2+3\cdot i}[/tex] where [tex]i^{2} = -1[/tex].
- What is the smallest value of [tex]x[/tex] that satisfies the equation [tex]8\cdot x^{2}-38\cdot x + 35 = 0[/tex]? Express your answer as a decimal.
To learn more on quadratic functions, we kindly invite to check this verified question: https://brainly.com/question/4119784
To learn more on complex numbers, we kindly invite to check this verified question: https://brainly.com/question/10251853