Assuming you need the integral expressing the volume of [tex]E[/tex], the easiest setup is to integrate with respect to [tex]y[/tex] first.
This is done with either
[tex]\displaystyle\iiint_E\mathrm dV=\int_{-2}^2\int_{-2}^2\int_0^{4-x^2-z^2}\mathrm dy\,\mathrm dx\,\mathrm dz[/tex]
[tex]\displaystyle\iiint_E\mathrm dV=\int_{-2}^2\int_{-2}^2\int_0^{4-x^2-z^2}\mathrm dy\,\mathrm dz\,\mathrm dx[/tex]
Thanks to symmetry, integrating with respect to either [tex]x[/tex] or [tex]z[/tex] first will be nearly identical.
First, with respect to [tex]x[/tex]:
[tex]\displaystyle\iiint_E\mathrm dV=\int_{-2}^2\int_0^4\int_{-\sqrt{4-y-z^2}}^{\sqrt{4-y-z^2}}\mathrm dx\,\mathrm dy\,\mathrm dz[/tex]
[tex]\displaystyle\iiint_E\mathrm dV=\int_0^4\int_{-2}^2\int_{-\sqrt{4-y-z^2}}^{\sqrt{4-y-z^2}}\mathrm dx\,\mathrm dz\,\mathrm dy[/tex]
Next, with respec to [tex]z[/tex]:
[tex]\displaystyle\iiint_E\mathrm dV=\int_{-2}^2\int_0^4\int_{-\sqrt{4-y-z^2}}^{\sqrt{4-y-x^2}}\mathrm dz\,\mathrm dy\,\mathrm dx[/tex]
[tex]\displaystyle\iiint_E\mathrm dV=\int_0^4\int_{-2}^2\int_{-\sqrt{4-y-z^2}}^{\sqrt{4-y-x^2}}\mathrm dz\,\mathrm dx\,\mathrm dy[/tex]