Find the quotient of the quantity negative 15 times x to the 2nd power times y to the 6th power plus 50 times x to the 4th power times y to the 3rd power minus 20 times x to the 2nd power times y all over 5 times x to the 2nd power times y.

−3y5 + 10x2y2 − 4
−15x2y6 + 50x4y3 − 4
3y5 + 10x2y2 − 4
−3xy5 + 10x2y2 − 4

Respuesta :

Evaluate (-15*x^2*y^6+50*x^4*y^3-20*x^2*y)/(5*x^2*y)
In shorter words, its a.

Answer:

[tex]3y^{5}+10x^{2}y^{2}-4[/tex]

Step-by-step explanation:

We have to find the quotient of the quantity

[tex]\frac{15x^{2}y^{6}+50x^{4}y^{3}-20x^{2}y}{5x^{2}y}[/tex]

= [tex]\frac{15x^{2}y^{6}}{5x^{2}y}+\frac{50x^{4}y^{3}}{5x^{2}y}-\frac{20x^{2}y}{5x^{2}y}[/tex]

= [tex]3y^{5}+10x^{2}y^{2}-4[/tex]

Therefore, [tex]3y^{5}+10x^{2}y^{2}-4[/tex] is the quotient of the given expression.