Have a function f defined by
[tex]f(x)=(\sin{x}+1)^x[/tex]
determine the value of
[tex]f'\left(\dfrac{3\pi}{2}\right)[/tex]

Respuesta :

Answer:

[tex]f'(\frac{3\pi}{2})[/tex] is undefined

Step-by-step explanation:

[tex]f(x)=(sinx+1)^x[/tex]

[tex]\frac{d}{dx}(sinx+1)^x[/tex]

[tex]\frac{d}{dx}e^{ln((sinx+1)^x)}[/tex]

[tex]\frac{d}{dx}e^{xln(sinx+1)}[/tex]

[tex](\frac{d}{dx}(x)*ln(sinx+1)+x*\frac{d}{dx}ln(sinx+1))e^{xln(sinx+1)}[/tex]

[tex](ln(sinx+1)+x*cosx(\frac{1}{sinx+1}))(sinx+1)^x[/tex]

[tex][ln(sinx+1)+\frac{xcosx}{sinx+1}](sinx+1)^x[/tex]

[tex]f'(\frac{3\pi}{2})=[ln(sin\frac{3\pi}{2} +1)+\frac{\frac{3\pi}{2} cos\frac{3\pi}{2} }{sin\frac{3\pi}{2} +1}](sin\frac{3\pi}{2} +1)^{\frac{3\pi}{2}}[/tex]

[tex]f'(\frac{3\pi}{2})=[ln(-1+1)+\frac{\frac{3\pi}{2} (0) }{-1+1}](-1+1)^{-1}[/tex]

[tex]f'(\frac{3\pi}{2})=[ln(0)+\frac{0}{0}](0)^{-1}[/tex]

Because the derivative is undefined, then the function isn't differentiable at the point [tex](\frac{3\pi}{2},0)[/tex], making it a critical point since the slope of the function is 0.