Respuesta :

Answer:

The choice c)

Step-by-step explanation:

[tex] \cos(30) = \frac{12}{x} \\ \\ x = 8 \sqrt{3} [/tex]

[tex] \tan(60) = \frac{12}{y} \\ y = 4 \sqrt{3} [/tex]

[tex]\large\huge\green{\sf{Answer:-}}[/tex]

  • option c is correct answer

[tex]\huge{\underline{\underline{\boxed{\sf{\green{Explanation:-}}}}}}[/tex]

[tex]\large\huge\green{\sf{Given:-}}[/tex]

  • ABC a right triangle:-
  • hypotenuse= AC= x
  • base= 12 unit
  • perpendicular=AB = y

[tex]\large\huge\green{\sf{ToFind:-}}[/tex]

  • Hypotenuse=AC = x=??
  • perpendicular=AB = y=??

[tex]\large\huge\green{\sf{FormulaRequired:-}}[/tex]

  • [tex] sec Q= \frac{hypotense}{base} [/tex]
  • value of sec 30°= 2/√3
  • [tex] sin Q= \frac{perpendicular}{hypotenuse} [/tex]
  • value of sin30° = 1/2

[tex]\large\huge\green{\sf{Solution:-}}[/tex]

[tex] \red {\mathbb{ \underline { \tt By \: Using \: Trigonometric\: Formula:-}}}[/tex]

[tex]for \: x : - \\ \sec(Q) = \frac{h}{b} \\ sec(30 {}^{o} ) = \frac{x}{12} \\ \sec(30) = \frac{2}{ \sqrt{3} } \\ \frac{2}{ \sqrt{3} } = \frac{x}{12} \\ x = \frac{12 \times 2}{ \sqrt{3} } \\ x = \frac{24}{ \sqrt{3} } \: \\ by \: rationalise \: denomator \\ x = \frac{24 \times \sqrt{3} }{ \sqrt{3 } \times \sqrt{3} } \\ x = \frac{24 \sqrt{3} }{3} \\ x = 8 \sqrt{3} [/tex]

[tex]for \: y : - \\ sinQ = \frac{p}{h} \\ sin30 {}^{o} = \frac{y}{8 \sqrt{3} } \\ sin30 {}^{o} = \frac{1}{2} \\ \frac{1}{2} = \frac{y}{8 \sqrt{3} } \\ y = \frac{8 \sqrt{3} }{2} \\ y = 4 \sqrt{3} [/tex]

  • hence x= 8√3 and y= 4√3