Respuesta :

The polynomial function is P(x) = x³ - 3x² + 4x - 2

If the zeros of the polynomial are

  • 1
  • 1 + i
  • 1 - i

then its factors are,

  • x - 1,
  • x - (1 + i)
  • x - (1 - i)

To obtain the polynomial function, we multiply its factors together.

So, P(x) = (x - 1)(x - (1 + i)][x - (1 - i)]

= (x - 1)[(x - 1 + i)][x - 1 - i)]

=  (x - 1)[(x - 1) + i)][(x - 1) - i)]

= (x - 1)[(x - 1)² - i²]       (difference of two squares)

= (x - 1)[x² - 2x + 1 - (-1)]

= (x - 1)[x² - 2x + 1 + 1]

= (x - 1)[x² - 2x + 2]

= x³ - 2x² + 2x - x² + 2x - 2

= x³ - 2x² - x² + 2x + 2x - 2

= x³ - 3x² + 4x - 2

So, the polynomial function is P(x) = x³ - 3x² + 4x - 2

Learn more about polynomial function here:

https://brainly.com/question/2833285