The monthly depreciation is [tex]V(t) = 15200(0.9865)^t[/tex], and the value after 7 years is (d) $4900
The yearly depreciation is given as:
[tex]V(t) = 15200(0.85)^t[/tex]
There are 12 months in a year, so the monthly depreciation would be
[tex]V(t) = 15200(0.85)^{\frac{t}{12}}[/tex]
Where t represents the number of months
Rewrite the expression as:
[tex]V(t) = 15200(0.85^\frac{1}{12})^t[/tex]
Evaluate the exponent of 1/12
[tex]V(t) = 15200(0.9865)^t[/tex]
After 7 years, we have:
[tex]t =7 \times 12[/tex]
[tex]t =84[/tex]
So, the value of the motorcycle after 7 years is
[tex]V(84) = 15200(0.9865)^{84}[/tex]
[tex]V(84) = 4852.88[/tex]
Approximate to the nearest hundred dollar
[tex]V(84) = 4900[/tex]
Hence, the value after 7 years is (d) $4900
Read more about depreciation functions at:
https://brainly.com/question/7072186