Respuesta :

Answer:

[tex]\sqrt{61}[/tex]

Step-by-step explanation:

Calculate the distance d using the distance formula

d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]

with (x₁, y₁ ) = (0, 3 ) and (x₂, y₂ ) = (5, - 3 )

d = [tex]\sqrt{(5-0)^2+(-3-3)^2}[/tex]

  = [tex]\sqrt{5^2+(-6)^2}[/tex]

  = [tex]\sqrt{25+36}[/tex]

 = [tex]\sqrt{61}[/tex]

Answer:

[tex]\displaystyle\mathsf{Distance(d)\:=\:\sqrt{61}\:\:or\:\:7.8102}[/tex]

Step-by-step explanation:

Given the two points, (0, 3) and (5, -3), we could use the distance formula to determine how far apart are these two points from each other.

Let (x₁, y₁) =  (0, 3)

     (x₂, y₂) = (5, -3)

Substitute these values into the following distance formula:

[tex]\displaystyle\mathsf{Distance(d)\:=\:\sqrt{(x_2\:-\:x_1)^2 \:+\:(y_2\:-\:y_1)^2} }[/tex]

[tex]\displaystyle\mathsf{Distance(d)\:=\:\sqrt{(5\:-\:0)^2 \:+\:(-3\:-\:3)^2} }[/tex]

[tex]\displaystyle\mathsf{Distance(d)\:=\:\sqrt{(5)^2 \:+\:(-6)^2} }[/tex]

[tex]\displaystyle\mathsf{Distance(d)\:=\:\sqrt{25 \:+\:36} }[/tex]

[tex]\displaystyle\mathsf{Distance(d)\:=\:\sqrt{61}\:\:or\:\:7.8102}[/tex]

Therefore, the distance between the given pair of points is [tex]\displaystyle\mathsf{\sqrt{61}\:\:or\:\:7.8102}[/tex].