contestada

Determine whether the series is convergent. Identify the type of the series and test used to evaluate.

Determine whether the series is convergent Identify the type of the series and test used to evaluate class=

Respuesta :

The first series,

[tex]\displaystyle \sum_{k=2}^\infty \frac{\cos(k)}{k^2}[/tex]

is convergent. By comparison, using the fact that |cos(x)| ≤ 1 for all real x,

[tex]\displaystyle \sum_{k=2}^\infty \frac{\cos(k)}{k^2} \le \sum_{k=2}^\infty \frac1{k^2}[/tex]

and the bounding series is a convergent p-series (with p = 2).

The second series,

[tex]\displaystyle \sum_{k=2}^\infty \frac{e^k}{\left(2+\frac1k\right)^k}[/tex]

is divergent by the limit test. We have

[tex]\dfrac{e^k}{\left(2 + \frac1k\right)^k} = \dfrac{e^k}{2^k\left(1+\frac1{2k}\right)^k} = \left(\dfrac e2\right)^k \cdot \dfrac1{\left(1+\frac1{2k}\right)^k}[/tex]

By definition,

[tex]e = \displaystyle \lim_{k\to\infty}\left(1+\frac1k\right)^k[/tex]

so that

[tex]\displaystyle \lim_{k\to\infty}\left(1+\frac1{2k}\right)^k = \lim_{k\to\infty}\sqrt{\left(1+\frac1{2k}\right)^{2k}} = \sqrt{\lim_{k'\to\infty}\left(1+\frac1{k'}\right)^{k'}} = \sqrt{e}[/tex]

so that the limit of the summand is

[tex]\displaystyle \lim_{k\to\infty} \frac{e^k}{\left(2+\frac1k\right)^k} = \frac1{\sqrt{e}} \lim_{k\to\infty} \left(\frac e2\right)^k[/tex]

but e > 2, so the limit is ∞.