Jim rode for 5.5 hours
The given parameters are:
[tex]Distance = 189miles[/tex] -- the total distance
[tex]Time= 6hours[/tex] --- the total time
The rates are given as:
[tex]w = 4mi/hr[/tex] ---- walks
[tex]r = 34mi/hr[/tex] --- ride
So, we have the following equation
[tex]t_w + t_r = 6[/tex] --- the sum of time walking and riding the bicycle
[tex]d_w + d_r = 189[/tex] --- the sum of distance walked and riding the bicycle
Make dr and tr the subjects in the above equations
[tex]t_r = 6 - t_w[/tex]
[tex]d_r = 189 - d_w[/tex]
The equation for distance walked is:
[tex]w = \frac{d}{t}[/tex]
So, we have:
[tex]4 = \frac{d}{t}[/tex]
Make d the subject
[tex]d = 4t[/tex]
Rewrite as:
[tex]d_w = 4t_w[/tex]
For riding the bicycle, we have:
[tex]r = \frac{d}{t}[/tex]
So, we have:
[tex]34 = \frac{189 - d_w}{6 -t_w}[/tex]
Open brackets
[tex]204 - 34t_w = 189 - d_w[/tex]
Rewrite as:
[tex]d_w =34t_w + 189 - 204[/tex]
[tex]d_w =34t_w-15[/tex]
Substitute [tex]d_w =34t_w-15[/tex] in [tex]d_w = 4t_w[/tex]
[tex]34t_w - 15 = 4t_w[/tex]
Collect like terms
[tex]34t_w - 4t_w = 15[/tex]
[tex]30t_w = 15[/tex]
Divide both sides by 30
[tex]t_w = 0.5[/tex]
Recall that:
[tex]t_r = 6 - t_w[/tex]
So, we have:
[tex]t_r = 6 - 0.5[/tex]
[tex]t_r = 5.5[/tex]
Hence, Jim rode for 5.5 hours
Read more about speed and distance at:
https://brainly.com/question/2854969